Name:		Date:	Class:	
	INTEGRATED P METRIC SYST	HYSICS & CHEN EM MEASUREN		
	 How are mass and length measure in the Metric System? What are the two ways that we can measure the volume of an object? 			
HYPOTHESIS:				
	Beaker, 100mL graduated aluminum washer, metal o	•	, balance, cup containing a marble, nd a rubber stopper	
PROCEDURE:	PART I – MEASURING N	IASS OF SOLIDS AN	ID LIQUIDS	
		neasure the mass of e	o individually and record. Each each object by themselves. Write	
	2. Find the mass of the e	empty beaker and reco	ord.	
			ater and pour the water into the PLUS THE 100mL OF WATER	
	4. Calculate the mass of	the 100mL of water a	lone and record.	
		e same empty beaker.	nder with 50mL of water and pour Now measure the mass of the d record.	
	6. Calculate the mass of	the 50mL of water alo	one and record.	
	 Can you determine a water? Show how you 	-	igure out the mass of 1mL of ions chart.	
PROCEDURE:	PART II – MEASURING L		ULATING VOLUME	
	 Measure the length, w and record in the table 		ur metal cube in centimeters (cm)	
	 Measure the length, w and record in the table 		e wooden block in centimeters (cm)	
			calculate the volume of the cube et to use the correct units.	

PROCEDURE: PART III – MEASURING VOLUME BY DISPLACEMENT

- 1. Fill the graduated cylinder about halfway with water and record the volume.
- 2. Drop the rubber stopper gently into the water being careful not to splash any water. Measure the new water level.
- 3. By subtraction, calculate the volume of the rubber stopper alone and record in the data table.
- 4. Measure the volume of the stopper again by doing steps 1, 2 and 3 again for trial 2.
- 5. Repeat steps 1, 2, 3, and 4 ALL OVER AGAIN, but this time using the ALUMINUM WASHER, MARBLE and then the METAL CUBE.

OBSERVATIONS: (Don't forget to use the correct units behind all numbers!)

PART I - MEASURING MASS OF SOLIDS AND LIQUIDS

OBJECT	MASS #1	MASS #2	AVERAGE MASS
Wood Block			
Rubber Stopper			
Aluminum Washer			
Metal Cube			
Marble			

PART I CONTINUED

OBSERVATIONS	100mL OF WATER	50mL OF WATER
Mass of Beaker plus Water		
Mass of Empty Beaker		

The mass of 100mL of water is ______. The mass of 50mL of water is

_____. The mass of 1mL of water must be ______. It can be

calculated by ______.

PART II VOLUME BY CALCULATION AND MEASURING LENGTHS

OBJECT	LENGTH	WIDTH	HEIGHT	VOLUME
Metal Cube				
Wood Block				

Show all work here. You may round off to the nearest tenth.

PART III VOLUME BY DISPLACEMENT

OBJECT	RUBBER S	RUBBER STOPPER MARBLE		BLE	METAL CUBE	
	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2
Water level after object was						
added Water level before object was added						
Amount the water level rose (volume by displacement)						

QUESTIONS:

- 1. Why should you take more than one measurement of each length or each mass reading?
- 2. Draw and label an illustration of the correct way to read the level in a graduated cylinder and explain why it is read in this manner. Include correct terminology.
- 3. How can you calculate the volume of a rectangular object?

- 4. How can you find the volume of an object with an irregular shape?
- 5. Define the following terms:
 - A. Volume
 - B. Cubic Centimeter
 - C. Displacement
 - D. Meniscus
 - E. Mass
- 6. Compare your volume answer in Part II for the metal cube with your volume answer for the SAME metal cube in Part III. Should your answers be the same? Explain why or why not.

CONCLUSION: Based on your observations in this lab, re-answer the original problem stated at the beginning of this experiment.